If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+25x-18.75=0
a = 5; b = 25; c = -18.75;
Δ = b2-4ac
Δ = 252-4·5·(-18.75)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-10\sqrt{10}}{2*5}=\frac{-25-10\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+10\sqrt{10}}{2*5}=\frac{-25+10\sqrt{10}}{10} $
| (x+1)^2-8=0 | | 12+11+b=39 | | 8x-6x+12=3x-18 | | 81=72(1+r) | | 81=72(1+r)10 | | 165=-5(-5x-8) | | 64/x=6.75 | | 13/4*w*19=532 | | 11=-7x-4-8x | | 4x+12-3=7x+2-x | | 5(-5)+8=3x-2= | | 6X-3+2x+5+90=180 | | y=7+2*3 | | -3(3x+15)-(10=x)=35 | | y=7+2(3) | | 1.4(x+12)=2 | | -2-4x=-10 | | 6-x=5+30 | | 2/7(x)+11/7(x)=3/5 | | 2x+3=x^2+x+12 | | 1.49x+120=2 | | 6X-3+2x+5=180 | | u=21÷3 | | 2p+p=13 | | 1/4x-6=50 | | 3×x+2=2×x+5 | | 16x+12=7x+21 | | -2x(6+x)=18-3x | | 45x-9=81 | | 5=4/3x+7/3 | | x5/2+x3/5=9 | | 3×x+2=2×x-4 |